Quantum low-density parity-check (qLDPC) codes offer a promising route to scalable fault-tolerant quantum computation with constant overhead. Recent advancements have shown that qLDPC codes can outperform the quantum memory capability of surface codes even with near-term hardware. The question of how to implement logical gates fault-tolerantly for these codes is still open. We present new examples of high-rate bivariate bicycle (BB) codes with enhanced symmetry properties. These codes feature explicit nice bases of logical operators (similar to toric codes) and support fold-transversal Clifford gates without overhead. As examples, we construct $[[98,6,12]]$ and $[[162, 8, 12]]$ BB codes which admit interesting fault-tolerant Clifford gates. Our work also lays the mathematical foundations for explicit bases of logical operators and fold-transversal gates in quantum two-block and group algebra codes, which might be of independent interest.
翻译:暂无翻译