Deep neural networks (DNNs) are becoming more prevalent in important safety-critical applications, where reliability in the prediction is paramount. Despite their exceptional prediction capabilities, current DNNs do not have an implicit mechanism to quantify and propagate significant input data uncertainty -- which is common in safety-critical applications. In many cases, this uncertainty is epistemic and can arise from multiple sources, such as lack of knowledge about the data generating process, imprecision, ignorance, and poor understanding of physics phenomena. Recent approaches have focused on quantifying parameter uncertainty, but approaches to end-to-end training of DNNs with epistemic input data uncertainty are more limited and largely problem-specific. In this work, we present a DNN optimized with gradient-based methods capable to quantify input and parameter uncertainty by means of interval analysis, which we call Deep Interval Neural Network (DINN). We perform experiments on an air pollution dataset with sensor uncertainty and show that the DINN can produce accurate bounded estimates from uncertain input data.
翻译:深神经网络(DNNs)在重要的安全关键应用中越来越普遍,因为预测的可靠性至关重要。尽管目前的DNS具有特殊的预测能力,但目前DNS并没有一个用于量化和传播重大输入数据不确定性的隐含机制,这在安全关键应用中是常见的。在许多情况下,这种不确定性是隐含的,可能来自多种来源,例如对数据生成过程缺乏了解、不精确、无知和对物理现象缺乏了解。最近的方法侧重于量化参数不确定性,但对带有缩入输入数据的不确定性的DNNS进行端到端培训的方法则较为有限,而且基本上针对特定问题。在这项工作中,我们提出了一个基于梯度的优化方法,能够通过间隙分析(我们称之为深跨神经网络(DINN))来量化输入和参数不确定性。我们进行了关于具有传感器不确定性的空气污染数据集的实验,并表明DINN能够从不确定的投入数据中得出准确的受约束的估计数。