In this work, we introduce a novel approach to formulating an artificial viscosity for shock capturing in nonlinear hyperbolic systems by utilizing the property that the solutions of hyperbolic conservation laws are not reversible in time in the vicinity of shocks. The proposed approach does not require any additional governing equations or a priori knowledge of the hyperbolic system in question, is independent of the mesh and approximation order, and requires the use of only one tunable parameter. The primary novelty is that the resulting artificial viscosity is unique for each component of the conservation law which is advantageous for systems in which some components exhibit discontinuities while others do not. The efficacy of the method is shown in numerical experiments of multi-dimensional hyperbolic conservation laws such as nonlinear transport, Euler equations, and ideal magnetohydrodynamics using a high-order discontinuous spectral element method on unstructured grids.
翻译:在这项工作中,我们采用一种新颖的方法来为非线性双曲线系统中的休克捕捉设计一种人工粘度,方法是利用超双曲线保护法的解决方案在震荡附近无法及时逆转的特性。拟议的方法并不要求任何额外的管理方程式或对相关双曲线系统的先验知识,它独立于网状和近似顺序,只要求使用一个金枪鱼可捕量参数。主要的新颖之处是,由此产生的人工粘度对于保护法的每个组成部分都是独特的,对于某些部件显示不连续而另一些部件不连续的系统是有利的。该方法的效力表现在多维度双曲线保护法的数字实验中,例如非线性运输、电动方程式和理想磁力动力学,在无结构的电网上使用高顺序不连续光谱元件法。