The quality of images captured by smartphones is an important specification since smartphones are becoming ubiquitous as primary capturing devices. The traditional image signal processing (ISP) pipeline in a smartphone camera consists of several image processing steps performed sequentially to reconstruct a high quality sRGB image from the raw sensor data. These steps consist of demosaicing, denoising, white balancing, gamma correction, colour enhancement, etc. Since each of them are performed sequentially using hand-crafted algorithms, the residual error from each processing module accumulates in the final reconstructed signal. Thus, the traditional ISP pipeline has limited reconstruction quality in terms of generalizability across different lighting conditions and associated noise levels while capturing the image. Deep learning methods using convolutional neural networks (CNN) have become popular in solving many image-related tasks such as image denoising, contrast enhancement, super resolution, deblurring, etc. Furthermore, recent approaches for the RAW to sRGB conversion using deep learning methods have also been published, however, their immense complexity in terms of their memory requirement and number of Mult-Adds make them unsuitable for mobile camera ISP. In this paper we propose DelNet - a single end-to-end deep learning model - to learn the entire ISP pipeline within reasonable complexity for smartphone deployment. Del-Net is a multi-scale architecture that uses spatial and channel attention to capture global features like colour, as well as a series of lightweight modified residual attention blocks to help with denoising. For validation, we provide results to show the proposed Del-Net achieves compelling reconstruction quality.


翻译:智能手机摄取图像的质量是一项重要规格,因为智能手机作为主要捕捉装置正在变得无处不在,因此智能手机拍摄的图像信号处理(ISP)传统管道在智能手机摄像机中的传统图像处理(ISP)管道质量有限,包括从原始传感器数据中按顺序进行的若干图像处理步骤,以重建高质量的SRGB图像。这些步骤包括演示、脱色、白平衡、伽马校正、彩色增强等。由于每个步骤都是按顺序使用手动算法进行的,每个处理模块的剩余误差在最后重建的信号中积累。因此,传统的ISP管道在各种照明条件和相关噪音水平的通用性方面,重建质量有限。使用革命性神经网络(CNN)的深层学习方法,在解决许多与图像有关的任务时变得很受欢迎,例如图像解析、对比增强、超分辨率解析、分解等。 此外,最近使用深层学习方法对SRGBB转换的系统转换方法,也在最后重建信号中积累了它们的记忆要求和Mult-Add路段数量方面都限制了重建质量质量,同时捕捉取图像。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员