Real-time analysis of bio-heat transfer is very beneficial in improving clinical outcomes of hyperthermia and thermal ablative treatments but challenging to achieve due to large computational costs. This paper presents a fast numerical algorithm well suited for real-time solutions of bio-heat transfer, and it achieves real-time computation via the (i) computationally efficient explicit dynamics in the temporal domain, (ii) element-level thermal load computation, (iii) computationally efficient finite elements, (iv) explicit formulation for unknown nodal temperature, and (v) pre-computation of constant simulation matrices and parameters, all of which lead to a significant reduction in computation time for fast run-time computation. The proposed methodology considers temperature-dependent thermal properties for nonlinear characteristics of bio-heat transfer in soft tissue. Utilising a parallel execution, the proposed method achieves computation time reduction of 107.71 and 274.57 times compared to those of with and without parallelisation of the commercial finite element codes if temperature-dependent thermal properties are considered, and 303.07 and 772.58 times if temperature-independent thermal properties are considered, far exceeding the computational performance of the commercial finite element codes, presenting great potential in real-time predictive analysis of tissue temperature for planning, optimisation and evaluation of thermo-therapeutic treatments. The source code is available at https://github.com/jinaojakezhang/FEDFEMBioheat.
翻译:对生物热量转移的实时分析非常有利于改善超热和热融化治疗的临床结果,但由于计算成本巨大,难以实现。本文提出了一个快速数字算法,非常适合实时解决生物热量转移的实时解决方案,并通过以下方法实现实时计算:(一) 计算在时间域内高效的显性动态,(二) 元素级热负荷计算,(三) 计算高效的有限要素,(四) 明确配制未知节温,(五) 恒定模拟矩阵和参数,所有这些都导致快速运行时间计算计算时间的计算时间大幅缩短。拟议方法考虑了软组织生物热量转移非线性特性的温度依赖热性能性能。 利用平行执行,拟议方法计算时间减少了107.71和274.57倍,与考虑依赖温度热性热性热性能的商用有限要素编码相比,(五) 303.07和772.58次,如果考虑依赖温度的热性热性能特性,则大大超过组织温度/温度性热性值的计算性能/可测定数源。