We present an automatic COVID1-19 diagnosis framework from lung CT images. The focus is on signal processing and classification on small datasets with efforts putting into exploring data preparation and augmentation to improve the generalization capability of the 2D CNN classification models. We propose a unique and effective data augmentation method using multiple Hounsfield Unit (HU) normalization windows. In addition, the original slice image is cropped to exclude background, and a filter is applied to filter out closed-lung images. For the classification network, we choose to use 2D Densenet and Xception with the feature pyramid network (FPN). To further improve the classification accuracy, an ensemble of multiple CNN models and HU windows is used. On the training/validation dataset, we achieve a patient classification accuracy of 93.39%.
翻译:我们从肺部CT图像中提出了一个自动的COVID1-19诊断框架,重点是小型数据集的信号处理和分类,努力探索数据准备和增强,以提高2DCNN分类模型的普及能力;我们提出使用多个Hounsfield单元(HU)正常化窗口的独特而有效的数据增强方法;此外,原始切片图像被裁剪以排除背景,并应用过滤器来过滤封闭式图像;对于分类网络,我们选择使用2D Densenet和Xcepion,并使用特征金字塔网络(FPN);为了进一步提高分类准确性,我们使用了多个CNN模型和HU窗口的组合。关于培训/验证数据集,我们实现了93.39%的病人分类准确度。