During COVID-19, misinformation on social media affects the adoption of appropriate prevention behaviors. It is urgent to suppress the misinformation to prevent negative public health consequences. Although an array of studies has proposed misinformation suppression strategies, few have investigated the role of predominant credible information during crises. None has examined its effect quantitatively using longitudinal social media data. Therefore, this research investigates the temporal correlations between credible information and misinformation, and whether predominant credible information can suppress misinformation for two prevention measures (i.e. topics), i.e. wearing masks and social distancing using tweets collected from February 15 to June 30, 2020. We trained Support Vector Machine classifiers to retrieve relevant tweets and classify tweets containing credible information and misinformation for each topic. Based on cross-correlation analyses of credible and misinformation time series for both topics, we find that the previously predominant credible information can lead to the decrease of misinformation (i.e. suppression) with a time lag. The research findings provide empirical evidence for suppressing misinformation with credible information in complex online environments and suggest practical strategies for future information management during crises and emergencies.
翻译:在COVID-19期间,社交媒体的错误信息影响采取适当的预防行为,迫切需要制止错误信息,以防止负面的公共健康后果。尽管一系列研究提出了错误信息抑制战略,但很少有人调查危机期间主要可信信息的作用。没有人利用纵向社交媒体数据从数量上审视其影响。因此,这项研究调查了可信信息和错误信息之间的时间相关性,以及主要可信的信息能否为两种预防措施(即专题),即利用从2020年2月15日至6月30日收集的推特,即戴面具和社交迷惑,抑制错误信息。我们培训了支持病媒机器分类员检索相关的推文,并对包含每个专题可信信息和错误信息的推文进行分类。根据对两个专题的可信和错误信息时间序列的交叉关系分析,我们发现以前占主导地位的可信信息可能会导致错误信息减少(即压制)的时间滞后。研究结果为在复杂的在线环境中用可靠信息抑制错误信息提供了实证证据,并为危机和紧急情况下的未来信息管理提出了实际战略。