Recent works have shown that modern machine learning techniques can provide an alternative approach to the long-standing joint source-channel coding (JSCC) problem. Very promising initial results, superior to popular digital schemes that utilize separate source and channel codes, have been demonstrated for wireless image and video transmission using deep neural networks (DNNs). However, end-to-end training of such schemes requires a differentiable channel input representation; hence, prior works have assumed that any complex value can be transmitted over the channel. This can prevent the application of these codes in scenarios where the hardware or protocol can only admit certain sets of channel inputs, prescribed by a digital constellation. Herein, we propose DeepJSCC-Q, an end-to-end optimized JSCC solution for wireless image transmission using a finite channel input alphabet. We show that DeepJSCC-Q can achieve similar performance to prior works that allow any complex valued channel input, especially when high modulation orders are available, and that the performance asymptotically approaches that of unconstrained channel input as the modulation order increases. Importantly, DeepJSCC-Q preserves the graceful degradation of image quality in unpredictable channel conditions, a desirable property for deployment in mobile systems with rapidly changing channel conditions.
翻译:最近的工作表明,现代机器学习技术可以为长期存在的联合源-通道编码(JSCC)问题提供替代方法。非常有希望的初步结果(优于使用不同源和频道代码的流行数字方案)已经证明使用深层神经网络(DNNS)进行无线图像和视频传输的无线图像和视频传输。然而,这类计划的端到端培训需要不同的频道输入代表;因此,先前的工作假设,任何复杂的价值都可以通过频道传输。这可以防止在硬件或协议只能接受由数字星座规定的某些频道输入组合的情况下应用这些代码。在这里,我们提议使用一个有限的频道输入字母,为无线图像传输提供端至端优化的JSCC-Q。我们表明,DeepJSC-Q可以实现与以前工程的类似性能,允许任何具有复杂价值的频道输入,特别是在有高调制命令的情况下,以及随着调序的提高,不受限制的频道输入的性能,从而防止应用这些代码。我们提议,DeepJSC-Q在不限制的频道质量条件提高时,在不可预测的移动质量系统中保留一个不可预测的移动系统。