GenEO (`Generalised Eigenvalue problems on the Overlap') is a method for computing an operator-dependent spectral coarse space to be combined with local solves on subdomains to form a robust parallel domain decomposition preconditioner for elliptic PDEs. It has previously been proved, in the self-adjoint and positive-definite case, that this method, when used as a preconditioner for conjugate gradients, yields iteration numbers which are completely independent of the heterogeneity of the coefficient field of the partial differential operator. We extend this theory to the case of convection-diffusion-reaction problems, which may be non-self-adjoint and indefinite, and whose discretisations are solved with preconditioned GMRES. The GenEO coarse space is defined here using a generalised eigenvalue problem based on a self-adjoint and positive-definite subproblem. We obtain GMRES iteration counts which are independent of the variation of the coefficient of the diffusion term in the operator and depend only very mildly on the variation of the other coefficients. While the iteration number estimates do grow as the non-self-adjointness and indefiniteness of the operator increases, practical tests indicate the deterioration is much milder. Thus we obtain an iterative solver which is efficient in parallel and very effective for a wide range of convection-diffusion-reaction problems.
翻译:Geneo(Geneo)(“通用超升法上的超常使用值问题”)是一种方法,用来计算操作者依赖的光谱偏小空间,并与子域的当地解决方案相结合,形成对等-扩散-反应-反应-当地解决方案,以形成对等-对流派PDE的强大平行的平行分解先决条件。以前,在自对齐和正分解的案例中,已经证明,这种方法在作为调和梯度的前提条件时,产生与部分差分操作者系数领域差异完全独立的传动数字。我们将这一理论推广到对等-扩散-反应-反应问题的当地解决方案中,这些问题可能是非自我联合和无限期的,其离散化是用先决条件的Geneo 异常空间在此处使用一个基于自我连动和正分解子质的笼统的置值问题来定义的。我们获得GMRES的传动值计数独立于操作者扩散期系数的差异,并且仅非常温性地取决于实际一致的分摊-扩散-反应-反应-范围问题,而我们作为操作者进行不易变化-变化-变化-我们正在测试。