We introduce in this paper new, efficient numerical methods based on neural networks for the approximation of the mean curvature flow of either oriented or non-orientable surfaces. To learn the correct interface evolution law, our neural networks are trained on phase field representations of exact evolving interfaces. The structure of the networks draws inspiration from splitting schemes used for the discretization of the Allen-Cahn equation. But when the latter approximates the mean curvature motion of oriented interfaces only, the approach we propose extends very naturally to the non-orientable case. In addition, although trained on smooth flows only, our networks can handle singularities as well. Furthermore, they can be coupled easily with additional constraints which allows us to show various applications illustrating the flexibility and efficiency of our approach: mean curvature flows with volume constraint, multiphase mean curvature flows, numerical approximation of Steiner trees, numerical approximation of minimal surfaces.
翻译:在本文中,我们引入基于神经网络的新的高效数字方法,以近似定向或非定向表面的平均曲线流。为了学习正确的界面进化法,我们的神经网络接受关于精确演变界面的相片外观的训练。网络的结构从用于艾伦-卡恩方程式分解的分裂计划中得到灵感。但是,当后者仅接近定向界面的平均曲线运动时,我们建议的方法自然地延伸到非适应性案例。此外,尽管我们网络只受过关于平稳流流的训练,但它们也可以处理奇特性。此外,它们很容易与额外的限制相结合,使我们能够展示显示显示我们方法灵活性和效率的各种应用:具有体积限制的曲线流、多阶段平均曲线流、施泰纳树的数字近似、最小表面的数字近似。