We study the imbalance problem on complete bipartite graphs. The imbalance problem is a graph layout problem and is known to be NP-complete. Graph layout problems find their applications in the optimization of networks for parallel computer architectures, VLSI circuit design, information retrieval, numerical analysis, computational biology, graph theory, scheduling and archaeology. In this paper, we give characterizations for the optimal solutions of the imbalance problem on complete bipartite graphs. Using the characterizations, we can solve the imbalance problem in $\mathcal{O}(\log(|V|) \cdot \log(\log(|V|)))$ time, when given the cardinalities of the parts of the graph, and verify whether a given solution is optimal in $O(|V|)$ time on complete bipartite graphs. We also introduce a restricted form of proper interval bipartite graphs on which the imbalance problem is solvable in $\mathcal{O}(c \cdot \log(|V|) \cdot \log(\log(|V|)))$ time, where $c = \mathcal{O}(|V|)$, by using the aforementioned characterizations.
翻译:我们研究了完整的双部分图形中的不平衡问题。 不平衡问题是一个图表布局问题, 已知是NP- 完整的。 图表布局问题在同步计算机结构网络优化、 VLSI 电路设计、 信息检索、 数字分析、 计算生物学、 图形理论、 排期和考古学中找到了它们的应用。 在本文中, 我们给完整的双部分图形中的不平衡问题的最佳解决方案定性。 使用这些特征, 我们可以解决$\ mathcal{ O} (\\ log( ⁇ V)\ dot\ log ( log)\ log ( log( ⁇ ) ) $( ⁇ ) = log_\ log\ log_ ) 的不平衡问题, 并核查一个给定的解决方案是否在 $O( ) 美元( v) / log\ / log= 美元( log=) 时间( $\\\ log\ ) \\\\\\\\\\\\ \\\\ \\ \\\\\\\ \ \\\ \ \\ \\\\\\ \ \ \\\ \\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\