Behavioral cloning (BC) bears a high potential for safe and direct transfer of human skills to robots. However, demonstrations performed by human operators often contain noise or imperfect behaviors that can affect the efficiency of the imitator if left unchecked. In order to allow the imitators to effectively learn from imperfect demonstrations, we propose to employ the robust t-momentum optimization algorithm. This algorithm builds on the Student's t-distribution in order to deal with heavy-tailed data and reduce the effect of outlying observations. We extend the t-momentum algorithm to allow for an adaptive and automatic robustness and show empirically how the algorithm can be used to produce robust BC imitators against datasets with unknown heaviness. Indeed, the imitators trained with the t-momentum-based Adam optimizers displayed robustness to imperfect demonstrations on two different manipulation tasks with different robots and revealed the capability to take advantage of the additional data while reducing the adverse effect of non-optimal behaviors.
翻译:行为性克隆(BC)具有将人类技能安全和直接转让给机器人的巨大潜力。然而,人类操作者的演示往往含有噪音或不完善的行为,如果不加制止,会影响模仿者的效率。为了让模仿者从不完善的演示中有效地学习,我们提议使用强大的t-momentum优化算法。这一算法建立在学生的T-分布上,以便处理重尾数据并减少外向观测的效果。我们扩展了t-moum算法,允许适应性和自动稳健性,并用经验来显示算法如何能够用来产生强大的不完全的不完全的不完全仿真,对抗以t-momentum为基础的亚当优化模型。事实上,接受过以t-moum为基础的模拟器训练的仿真者展示了与不同机器人的两种不同操作任务不完善的演示,并展示了在减少非最佳行为的不利影响的同时利用额外数据的能力。