Decision-making often involves ranking and selection. For example, to assemble a team of political forecasters, we might begin by narrowing our choice set to the candidates we are confident rank among the top 10% in forecasting ability. Unfortunately, we do not know each candidate's true ability but observe a noisy estimate of it. This paper develops new Bayesian algorithms to rank and select candidates based on noisy estimates. Using simulations based on empirical data, we show that our algorithms often outperform frequentist ranking and selection algorithms. Our Bayesian ranking algorithms yield shorter rank confidence intervals while maintaining approximately correct coverage. Our Bayesian selection algorithms select more candidates while maintaining correct error rates. We apply our ranking and selection procedures to field experiments, economic mobility, forecasting, and similar problems. Finally, we implement our ranking and selection techniques in a user-friendly Python package documented here: https://dsbowen-conditional-inference.readthedocs.io/en/latest/.
翻译:决策往往涉及等级和选择。例如,为了组建一组政治预测员,我们可以首先将我们的选择范围缩小到在预测能力方面最有信心的10%的候选人。 不幸的是,我们并不了解每个候选人的真实能力,而是观察对它的一个噪音的估算。本文开发了新的巴伊西亚算法,以便根据噪音的估算对候选人进行排名和选择。我们利用根据经验数据进行的模拟,表明我们的算法往往优于常客排名和选择算法。我们的巴伊西亚排名算法产生较短的级别信任间隔,同时保持大致正确的覆盖。我们的巴伊西亚排名算法在选择更多候选人的同时保持正确的误差率。我们把我们的排名和选择程序应用于实地实验、经济流动性、预测和类似的问题。最后,我们用一个方便用户的Python软件包来应用我们的排名和选择技术。这里记录了:https://dsbowen-mental-inference.readthedocs.io/en/latst/。