Quantum key distribution (QKD) allows Alice and Bob to agree on a shared secret key, while communicating over a public (untrusted) quantum channel. Compared to classical key exchange, it has two main advantages: (i) The key is unconditionally hidden to the eyes of any attacker, and (ii) its security assumes only the existence of authenticated classical channels which, in practice, can be realized using Minicrypt assumptions, such as the existence of digital signatures. On the flip side, QKD protocols typically require multiple rounds of interactions, whereas classical key exchange can be realized with the minimal amount of two messages. A long-standing open question is whether QKD requires more rounds of interaction than classical key exchange. In this work, we propose a two-message QKD protocol that satisfies everlasting security, assuming only the existence of quantum-secure one-way functions. That is, the shared key is unconditionally hidden, provided computational assumptions hold during the protocol execution. Our result follows from a new quantum cryptographic primitive that we introduce in this work: the quantum-public-key one-time pad, a public-key analogue of the well-known one-time pad.
翻译:----
量子密钥分发(QKD)可以让Alice和Bob在公共(不可信)的量子通道上进行通信的同时达成共享的秘密密钥。相比于经典密钥交换,它具有两个主要的优势:(i)密钥对于任何攻击者都无条件隐藏;(ii)它的安全性只假设经过认证的经典通道存在,而这在实际操作中可以利用Minicrypt假设,如数字签名的存在。但是,QKD协议通常需要多次交互,而经典密钥交换只需要最少的两个消息。长期以来,一个悬而未决的问题是QKD是否需要比经典密钥交换更多的交互轮数。在本文中,我们提出了一个满足永久安全性的两个消息QKD协议,仅假设存在量子安全的单向函数。也就是说,提供的密钥在协议执行过程中,只要计算假设成立,就是无条件隐藏的。我们的结果来源于我们在本文中介绍的一个新型量子密码原语:量子公钥一次码本,它是一个知名一次码本的公钥模拟。