Emergency vehicle (EMV) service is a key function of cities and is exceedingly challenging due to urban traffic congestion. A main reason behind EMV service delay is the lack of communication and cooperation between vehicles blocking EMVs. In this paper, we study the improvement of EMV service under V2I connectivity. We consider the establishment of dynamic queue jump lanes (DQJLs) based on real-time coordination of connected vehicles. We develop a novel Markov decision process formulation for the DQJL problem, which explicitly accounts for the uncertainty of drivers' reaction to approaching EMVs. We propose a deep neural network-based reinforcement learning algorithm that efficiently computes the optimal coordination instructions. We also validate our approach on a micro-simulation testbed using Simulation of Urban Mobility (SUMO). Validation results show that with our proposed methodology, the centralized control system saves approximately 15\% EMV passing time than the benchmark system.
翻译:由于城市交通堵塞,紧急车辆服务是城市的一个关键功能,由于城市交通堵塞,极具挑战性。快速机动车辆服务延误的主要原因是阻碍机动车辆车辆的车辆之间缺乏沟通与合作。在本文件中,我们研究了V2I连通性下改进机动车辆服务的情况。我们考虑在连通车辆的实时协调基础上建立动态排队跳跃车道。我们为DQJL问题开发了新型的Markov决策程序,明确说明了司机对接近快速机动车辆的反应的不确定性。我们提出了基于深度神经网络的强化学习算法,以有效计算最佳协调指示。我们还验证了我们使用模拟城市流动(SUMO)的微模拟试验床的做法。验证结果表明,根据我们提出的方法,中央控制系统比基准系统节省了大约15个电子机动车辆过关时间。