Containerization allows developers to define the execution environment in which their software needs to be installed. Docker is the leading platform in this field, and developers that use it are required to write a Dockerfile for their software. Writing Dockerfiles is far from trivial, especially when the system has unusual requirements for its execution environment. Despite several tools exist to support developers in writing Dockerfiles, none of them is able to generate entire Dockerfiles from scratch given a high-level specification of the requirements of the execution environment. In this paper, we present a study in which we aim at understanding to what extent Deep Learning (DL), which has been proven successful for other coding tasks, can be used for this specific coding task. We preliminarily defined a structured natural language specification for Dockerfile requirements and a methodology that we use to automatically infer the requirements from the largest dataset of Dockerfiles currently available. We used the obtained dataset, with 670,982 instances, to train and test a Text-to-Text Transfer Transformer (T5) model, following the current state-of-the-art procedure for coding tasks, to automatically generate Dockerfiles from the structured specifications. The results of our evaluation show that T5 performs similarly to the more trivial IR-based baselines we considered. We also report the open challenges associated with the application of deep learning in the context of Dockerfile generation.


翻译:容器化使开发人员能够定义其软件需要安装的执行环境。Docker是该领域的主要平台,使用它的开发人员需要为其软件编写Dockerfile。编写Dockerfiles并不容易,特别是当系统对于其执行环境有非传统要求时。尽管存在几种工具来支持开发人员编写Dockerfiles,但它们都无法从高级规范中生成整个Dockerfile。本文介绍了我们进行的一项研究,旨在了解已被证明在其他编码任务中非常成功的深度学习(DL)是否可以用于此特定的编码任务。我们初步定义了Dockerfile要求的结构化自然语言规范和一种方法,用于从当前可用的最大Dockerfile数据集中自动推断要求。我们使用获得的包含670,982个实例的数据集来训练和测试基于文本到文本转换变压器(T5)模型,遵循当前编码任务的最新技术流程,以从结构化规范中自动生成Dockerfiles。我们的评估结果表明,T5执行与我们考虑的更为轻松的基于IR的基线类似。我们还报告了在Dockerfile生成的深度学习应用中面临的挑战。

0
下载
关闭预览

相关内容

【2022新书】Python DevOps,245页pdf
专知会员服务
89+阅读 · 2022年7月11日
专知会员服务
51+阅读 · 2021年6月30日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
147+阅读 · 2023年3月24日
VIP会员
相关VIP内容
【2022新书】Python DevOps,245页pdf
专知会员服务
89+阅读 · 2022年7月11日
专知会员服务
51+阅读 · 2021年6月30日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员