In today's digital world most of the anti-malware tools are signature based which is ineffective to detect advanced unknown malware viz. metamorphic malware. In this paper, we study the frequency of opcode occurrence to detect unknown malware by using machine learning technique. For the purpose, we have used kaggle Microsoft malware classification challenge dataset. The top 20 features obtained from fisher score, information gain, gain ratio, chi-square and symmetric uncertainty feature selection methods are compared. We also studied multiple classifier available in WEKA GUI based machine learning tool and found that five of them (Random Forest, LMT, NBT, J48 Graft and REPTree) detect malware with almost 100% accuracy.
翻译:在当今的数字世界中,大多数防疟工具都以签名为基础,无法有效检测出先进的未知恶意软件,即变形的恶意软件。在本文中,我们研究了使用机器学习技术检测未知恶意软件的代码发生频率。为此目的,我们使用了卡格格·微软恶意软件分类挑战数据集。比较了从渔获分、信息收益、收益率、奇方和对称不确定性特征选择方法中获得的最前20个特征。我们还研究了WEKA GUI基于WEKA GUI的机器学习工具中的多个分类器,发现其中5个(兰多姆森林、LMT、NBT、J48 Graft和REPTree)以近100%的精确度检测了恶意软件。