In this paper we present three different numerical approaches to account for curl-type involution constraints in hyperbolic partial differential equations for continuum physics. All approaches have a direct analogy to existing and well-known divergence-preserving schemes for the Maxwell and MHD equations. The first method consists in a generalization of the Godunov-Powell terms, which means adding suitable multiples of the involution constraints to the PDE system in order to achieve the symmetric Godunov form. The second method is an extension of the generalized Lagrangian multiplier (GLM) approach of Munz et al., where the numerical errors in the involution constraint are propagated away via an augmented PDE system. The last method is an exactly involution preserving discretization, similar to the exactly divergence-free schemes for the Maxwell and MHD equations, making use of appropriately staggered meshes. We present some numerical results that allow to compare all three approaches with each other.
翻译:在本文中,我们提出了三种不同的数字方法,用于计算连续物理学超曲偏偏偏偏偏差方程式中卷轴型进动限制。所有方法都直接类比了Maxwell和MHD方程式中现有和众所周知的差异保留计划。第一种方法是概括地使用Godunov-Powell术语,这意味着为PDE系统增加适当的变动限制倍数,以实现对称的Godunov形式。第二种方法是扩大Munz等人的Lagrangian乘数(GLM)法(GLM)的延伸,在这个方法中,进化制约中的数字错误通过扩大的PDE系统传播出去。最后一种方法是完全在演进中保持离散化,与Maxwell和MHD方程式完全的无差异计划相似,同时使用适当错开的中间方程式。我们提出了一些数字结果,可以将所有三种方法相互比较。