This paper proposes to study the impact of image selective encryption on both forensics and privacy preserving mechanisms. The proposed selective encryption scheme works independently on each bitplane by encrypting the s most significant bits of each pixel. We show that this mechanism can be used to increase privacy by mitigating image recognition tasks. In order to guarantee a trade-off between forensics analysis and privacy, the signal of interest used for forensics purposes is extracted from the 8--s least significant bits of the protected image. We show on the CASIA2 database that good tampering detection capabilities can be achieved for s $\in$ {3,. .. , 5} with an accuracy above 80% using SRMQ1 features, while preventing class recognition tasks using CNN with an accuracy smaller than 50%.


翻译:本文建议研究图像选择性加密对法医和隐私保护机制的影响。 提议的选择性加密计划通过加密每个像素中最重要的部分,对每个比特机独立运作。 我们显示, 可以通过降低图像识别任务来增加隐私。 为了保证法医分析与隐私之间的权衡, 用于法医目的的利息信号是从受保护图像的8个最小部分中提取的。 我们在CASIA2 数据库中显示, 使用 SRMQ1 功能, 精确度超过80%, 使用 SRMQ1 功能, 可以实现良好的篡改检测能力, 同时防止使用CNN 的班级识别任务, 精确度小于 50% 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员