Partial differential equation (PDE) models with multiple temporal/spatial scales are prevalent in several disciplines such as physics, engineering, and many others. These models are of great practical importance but notoriously difficult to solve due to prohibitively small mesh and time step sizes limited by the scaling parameter and CFL condition. Another challenge in scientific computing could come from curse-of-dimensionality. In this paper, we aim to provide a quantum algorithm, based on either direct approximations of the original PDEs or their homogenized models, for prototypical multiscale problems in partial differential equations (PDEs), including elliptic, parabolic and hyperbolic PDEs. To achieve this, we will lift these problems to higher dimensions and leverage the recently developed Schr\"{o}dingerization based quantum simulation algorithms to efficiently reduce the computational cost of the resulting high-dimensional and multiscale problems. We will examine the error contributions arising from discretization, homogenization, and relaxation, analyze and compare the complexities of these algorithms in order to identify the best algorithms in terms of complexities for different equations in different regimes.


翻译:偏微分方程(PDE)模型在物理学、工程学等多个领域中具有多个时间/空间尺度。这些模型具有重要的实际意义,但由于缩放参数和CFL条件限制,网格和时间步长过小,难以解决。在科学计算中,另一个挑战可能来自维度灾难。在本文中,我们旨在提供一种基于直接逼近原始PDE或其均质化模型的量子算法,用于解决偏微分方程(PDE)中的典型多尺度问题,包括椭圆、抛物线和双曲线PDE。为了实现这一目标,我们将这些问题提升到高维度,并利用最近开发的基于薛定谔化的量子模拟算法,以高效地降低由高维度和多尺度问题产生的计算成本。我们将检查离散化、均质化和松弛引起的误差贡献,分析和比较这些算法的复杂性,以确定在不同方程和不同方案中,哪种算法在复杂性方面最优。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
23+阅读 · 2022年2月4日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员