The new coronavirus disease (COVID-19) has been declared a pandemic since March 2020 by the World Health Organization. It consists of an emerging viral infection with respiratory tropism that could develop atypical pneumonia. Experts emphasize the importance of early detection of those who have the COVID-19 virus. In this way, patients will be isolated from other people and the spread of the virus can be prevented. For this reason, it has become an area of interest to develop early diagnosis and detection methods to ensure a rapid treatment process and prevent the virus from spreading. Since the standard testing system is time-consuming and not available for everyone, alternative early-screening techniques have become an urgent need. In this study, the approaches used in the detection of COVID-19 based on deep learning (DL) algorithms, which have been popular in recent years, have been comprehensively discussed. The advantages and disadvantages of different approaches used in literature are examined in detail. The Computed Tomography of the chest and X-ray images give a rich representation of the patient's lung that is less time-consuming and allows an efficient viral pneumonia detection using the DL algorithms. The first step is the pre-processing of these images to remove noise. Next, deep features are extracted using multiple types of deep models (pre-trained models, generative models, generic neural networks, etc.). Finally, the classification is performed using the obtained features to decide whether the patient is infected by coronavirus or it is another lung disease. In this study, we also give a brief review of the latest applications of cough analysis to early screen the COVID-19, and human mobility estimation to limit its spread.


翻译:自2020年3月以来,世界卫生组织宣布新的冠状病毒(COVID-19)为流行病,自2020年3月以来,世界卫生组织已宣布新冠状病毒病毒(COVID-19)为流行病,其中包括一种新出现病毒感染,其呼吸道透视技术可能发展非典型肺炎。专家们强调早期发现带有COVID-19病毒的人的重要性。通过这种方式,病人将与其他人隔离,可以防止病毒的传播。为此原因,开发早期诊断和检测方法以确保快速治疗过程和防止病毒传播已成为人们感兴趣的领域。由于标准检测系统耗时且无法为每个人提供,因此,替代的早期筛查技术已成为一项紧迫的需要。在本研究中,基于深层次学习(DL)算法的COVID-19检测方法非常重要。近年来很流行的这种方法将受到全面讨论,文献中使用的不同方法的利弊端和弊端都得到了详细研究。胸部和X射线图像的精度代表了病人肺部的精度,而时间消耗程度较低,并且能够利用DL的早期筛查技术进行高效的肺炎检测。在这个研究中,使用这种深层次算法的精度模型进行下一步是使用新的基因变变变动模型。最后的模型是使用新的模型。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2021年5月29日
Arxiv
16+阅读 · 2021年3月2日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员