The new Coronavirus is spreading rapidly and it has taken the lives of many people so far. The virus has destructive effects on the human lung and early detection is very important. Deep Convolution neural networks are a powerful tool in classifying images. Therefore, in this paper a hybrid approach based on a deep network is presented. Feature vectors were extracted by applying a deep convolution neural network on the images and effective features were selected by the binary differential meta-heuristic algorithm. These optimized features were given to the SVM classifier. A database consisting of three categories of images as COVID-19, pneumonia, and healthy included 1092 X-ray samples was considered. The proposed method achieved an accuracy of 99.43%, a sensitivity of 99.16%, and a specificity of 99.57%. Our results demonstrate the suggested approach is better than recent studies on COVID-19 detection with X-ray images.


翻译:新的科罗纳病毒正在迅速传播,它已经夺走了许多人的生命。病毒对人类肺具有破坏性影响,早期检测非常重要。深相神经网络是图像分类的有力工具。因此,在本文件中提出了基于深网络的混合方法。通过在图像上应用深刻的连动神经网络来提取特性矢量,而有效特性则由二进制差分元超重算法来选择。这些优化的特征被给了SVM分类器。一个数据库包括三类图像,如COVID-19、肺炎和健康,包括1092 X射线样本。拟议方法的精确度达到99.43%,灵敏度达到99.16%,特性达到99.57%。我们的结果表明所建议的方法比最近用X光图像对COVID-19探测进行的研究要好。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
2+阅读 · 2021年8月9日
Arxiv
0+阅读 · 2021年8月5日
VIP会员
相关VIP内容
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员