Oracle bone inscriptions (OBIs) contain some of the oldest characters in the world and were used in China about 3000 years ago. As an ancients form of literature, OBIs store a lot of information that can help us understand the world history, character evaluations, and more. However, as OBIs were found only discovered about 120 years ago, few studies have described them, and the aging process has made the inscriptions less legible. Hence, automatic character detection and recognition has become an important issue. This paper aims to design a online OBI recognition system for helping preservation and organization the cultural heritage. We evaluated two deep learning models for OBI recognition, and have designed an API that can be accessed online for OBI recognition. In the first stage, you only look once (YOLO) is applied for detecting and recognizing OBIs. However, not all of the OBIs can be detected correctly by YOLO, so we next utilize MobileNet to recognize the undetected OBIs by manually cropping the undetected OBI in the image. MobileNet is used for this second stage of recognition as our evaluation of ten state-of-the-art models showed that it is the best network for OBI recognition due to its superior performance in terms of accuracy, loss and time consumption. We installed our system on an application programming interface (API) and opened it for OBI detection and recognition.


翻译:甲骨骨雕刻( OBI) 包含世界上一些最古老的人物, 大约在3000年前在中国使用。 作为古代文献形式, OBIs 储存了大量信息, 有助于我们了解世界历史、 性特征评价等等。 然而, 由于在120年前才发现 OBI, 很少有研究描述它们, 而老化过程使得这些刻录不易辨认。 因此, 自动性格检测和识别已成为一个重要的问题。 本文旨在设计一个在线 OBI 识别系统, 帮助保存和组织文化遗产。 我们评估了 OBI 识别的两个深层学习模式, 并设计了一个可用于 OPI 识别的 API 。 在第一阶段, 你只看到一次( YOLO ) 来检测和识别 OBI 。 然而, 并非所有 OBI 都能够被正确识别, 因此我们接下来使用移动网络来识别未探测的 OBI 。 移动Net 用于本次测试的第二个阶段, 显示我们所安装的 OBI 系统 的准确度测试系统 。

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月21日
Arxiv
8+阅读 · 2020年10月7日
Anomalous Instance Detection in Deep Learning: A Survey
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员