Machine-generated artworks are now part of the contemporary art scene: they are attracting significant investments and they are presented in exhibitions together with those created by human artists. These artworks are mainly based on generative deep learning techniques. Also given their success, several legal problems arise when working with these techniques. In this article we consider a set of key questions in the area of generative deep learning for the arts. Is it possible to use copyrighted works as training set for generative models? How do we legally store their copies in order to perform the training process? And then, who (if someone) will own the copyright on the generated data? We try to answer these questions considering the law in force in both US and EU and the future alternatives, trying to define a set of guidelines for artists and developers working on deep learning generated art.


翻译:机器创造的艺术作品现已成为当代艺术场景的一部分:它们吸引了大量投资,并且与人类艺术家创作的艺术作品一起在展览中展出。这些艺术作品主要基于基因深层次的学习技术。同样,由于这些工艺的成功,在运用这些工艺时也会产生一些法律问题。在本篇文章中,我们考虑了艺术基因深层学习领域的一系列关键问题。是否有可能将版权作品用作基因化模型的培训?我们如何合法存储其复制品以开展培训过程?然后,谁(如果有人)将拥有所生成数据的版权?我们试图回答这些问题,同时考虑美国和欧盟的现行法律以及未来的替代方法,试图为从事深造艺术的艺术家和开发者制定一套指南。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
25+阅读 · 2021年3月20日
Paraphrase Generation with Deep Reinforcement Learning
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
11+阅读 · 2021年3月25日
Arxiv
25+阅读 · 2021年3月20日
Paraphrase Generation with Deep Reinforcement Learning
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
5+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员