The exponential rise of online social media has enabled the creation, distribution, and consumption of information at an unprecedented rate. However, it has also led to the burgeoning of various forms of online abuse. Increasing cases of online antisemitism have become one of the major concerns because of its socio-political consequences. Unlike other major forms of online abuse like racism, sexism, etc., online antisemitism has not been studied much from a machine learning perspective. To the best of our knowledge, we present the first work in the direction of automated multimodal detection of online antisemitism. The task poses multiple challenges that include extracting signals across multiple modalities, contextual references, and handling multiple aspects of antisemitism. Unfortunately, there does not exist any publicly available benchmark corpus for this critical task. Hence, we collect and label two datasets with 3,102 and 3,509 social media posts from Twitter and Gab respectively. Further, we present a multimodal deep learning system that detects the presence of antisemitic content and its specific antisemitism category using text and images from posts. We perform an extensive set of experiments on the two datasets to evaluate the efficacy of the proposed system. Finally, we also present a qualitative analysis of our study.


翻译:在线社交媒体的激增使得信息以前所未有的速度创建、传播和消费了前所未有的信息。然而,它也导致了各种形式的在线虐待的出现。越来越多的在线反犹太主义案例因其社会政治后果而成为主要关注问题之一。与其他主要形式的在线虐待形式不同,如种族主义、性别歧视等,在线反犹太主义没有从机器学习的角度做很多研究。我们最了解的是,我们展示了在自动多式联运检测在线反犹太主义方面开展的首项工作。这项任务提出了多重挑战,包括从多种模式、背景参考文献中提取信号,以及处理反犹太主义的多个方面。不幸的是,没有为这一关键任务建立任何可公开使用的基准资料库。因此,我们收集了两个数据集,分别有3,102个和3,509个来自Twitter和Gab的社交媒体文章。此外,我们展示了一个多式深度学习系统,用来检测反犹内容的存在及其使用文章和图像的具体反犹主义类别。我们还对两个数据库进行了广泛的实验,以评价拟议系统的效率。我们最后对两个数据库进行了定性分析。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
6+阅读 · 2021年7月26日
Arxiv
5+阅读 · 2021年4月21日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员