The brain-computer interface (BCI) enables individuals with severe physical impairments to communicate with the world. BCIs offer computational neuroscience opportunities and challenges in converting real-time brain activities to computer commands and are typically framed as a classification problem. This article focuses on the P300 BCI that uses the event-related potential (ERP) BCI design, where the primary challenge is classifying target/non-target stimuli. We develop a novel Gaussian latent group model with sparse time-varying effects (GLASS) for making Bayesian inferences on the P300 BCI. GLASS adopts a multinomial regression framework that directly addresses the dataset imbalance in BCI applications. The prior specifications facilitate i) feature selection and noise reduction using soft-thresholding, ii) smoothing of the time-varying effects using global shrinkage, and iii) clustering of latent groups to alleviate high spatial correlations of EEG data. We develop an efficient gradient-based variational inference (GBVI) algorithm for posterior computation and provide a user-friendly Python module available at https://github.com/BangyaoZhao/GLASS. The application of GLASS identifies important EEG channels (PO8, Oz, PO7, Pz, C3) that align with existing literature. GLASS further reveals a group effect from channels in the parieto-occipital region (PO8, Oz, PO7), which is validated in cross-participant analysis.
翻译:脑机接口 (BCI) 使严重身体残疾的个体能够与世界进行交流。 BCI 提供了计算神经科学的机会和挑战,将实时的脑电活动转化为计算机命令,通常被构造为分类问题。本文聚焦于使用事件相关电位 (ERP) 的 P300 BCI,其中主要挑战是对目标/非目标刺激进行分类。我们开发了一种基于高斯潜在组模型和稀疏时变效应 (GLASS) 的新型模型,用于对 P300 BCI 进行贝叶斯推理。GLASS 采用多项式回归框架,直接解决了 BCI 应用程序中的数据集不平衡问题。 先验规范促进了 i) 使用软阈值进行特征选择和噪声降低,ii) 使用全局收缩对时变效应进行平滑,以及 iii) 对潜在组进行聚类,以缓解 EEG 数据的高空间相关性。我们开发了一种有效的梯度优化变分推断 (GBVI) 算法进行后验计算,并提供了一个用户友好的 Python 模块,该模块可以在 https://github.com/BangyaoZhao/GLASS 上获得。GLASS 应用程序识别了与现有文献相符合的重要 EEG 通道 (PO8、Oz、PO7、Pz、C3)。 GLASS 进一步揭示了来自顶枕区域通道 (PO8、Oz、PO7) 的组效应,在跨参与者分析中得到验证。