In this paper, we propose an approach to neural architecture search (NAS) based on graph embeddings. NAS has been addressed previously using discrete, sampling based methods, which are computationally expensive as well as differentiable approaches, which come at lower costs but enforce stronger constraints on the search space. The proposed approach leverages advantages from both sides by building a smooth variational neural architecture embedding space in which we evaluate a structural subset of architectures at training time using the predicted performance while it allows to extrapolate from this subspace at inference time. We evaluate the proposed approach in the context of two common search spaces, the graph structure defined by the ENAS approach and the NAS-Bench-101 search space, and improve over the state of the art in both.


翻译:在本文中,我们提出了基于图形嵌入的神经结构搜索方法(NAS ) 。 之前,NAS使用离散的、基于抽样的方法来处理,这些方法在计算上费用昂贵,而且有差异,这些方法成本较低,但对搜索空间施加了更大的限制。 拟议的方法利用双方的优势,利用预测的性能对培训时的建筑结构结构分组进行评估,同时允许从这一次空间推断推论时间进行推断。 我们评估了两个共同搜索空间的拟议方法,即ENAS方法和NAS-Bench-101搜索空间界定的图形结构,并改进了两者的艺术状况。

1
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年11月3日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
专知会员服务
61+阅读 · 2020年3月19日
知识图谱在可解释人工智能中的作用,附81页ppt
专知会员服务
140+阅读 · 2019年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年11月24日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
13+阅读 · 2019年11月14日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年11月3日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
专知会员服务
61+阅读 · 2020年3月19日
知识图谱在可解释人工智能中的作用,附81页ppt
专知会员服务
140+阅读 · 2019年11月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员