Autism Spectrum Disorder(ASD) is a set of neurodevelopmental conditions that affect patients' social abilities. In recent years, many studies have employed deep learning to diagnose this brain dysfunction through functional MRI (fMRI). However, existing approaches solely focused on the abnormal brain functional connections but ignored the impact of regional activities. Due to this biased prior knowledge, previous diagnosis models suffered from inter-site measurement heterogeneity and inter-individual phenotypic differences. To address this issue, we propose a novel feature extraction method for fMRI that can learn a personalized lower-resolution representation of the entire brain networking regarding both the functional connections and regional activities. Specifically, we abstract the brain imaging as a graph structure and straightforwardly downsample it to substructures by hierarchical graph pooling. To further recalibrate the distribution of the extracted features under phenotypic information, we subsequently embed the sparse feature vectors into a population graph, where the hidden inter-subject heterogeneity and homogeneity are explicitly expressed as inter- and intra-community connectivity differences, and utilize Graph Convolutional Networks to learn the node embeddings. By these means, our framework can extract features directly and efficiently from the entire fMRI and be aware of implicit inter-individual variance. We have evaluated our framework on the ABIDE-I dataset with 10-fold cross-validation. The present model has achieved a mean classification accuracy of 87.62\% and a mean AUC of 0.92, better than the state-of-the-art methods.


翻译:87. Autism Spectrum Disors (ASD) 是一套影响病人社会能力的神经发育状况的神经发育状况。近年来,许多研究运用了深层的学习,通过功能性MRI(FMRI)来诊断脑功能性机能障碍。然而,现有的方法仅仅侧重于大脑功能上的异常联系,却忽视了区域活动的影响。由于这种偏颇的先前知识,先前的诊断模型受到现场测量异质和个体口腔差异的影响。为了解决这个问题,我们为FMRI提出了一种新的特征提取方法,可以学习整个大脑网络在功能连接和区域活动方面的个性化低分辨率代表。具体地说,我们将大脑成像作为图形结构进行抽取,通过分层图集将它直接缩到亚结构下。为了进一步重新校正根据粒子信息对提取的特征的分布,我们随后将稀有的特性矢量嵌入人口图表,其中隐藏的源性异性和同质性表示为内部和内部之间在功能上的连接差异,并且利用Calevulal Comal Net Net Network Net comnetal comm comm comm commelbal commet the the the the cal demotional dal dreal resmlationbal dalbal ress

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Arxiv
7+阅读 · 2020年8月7日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员