Objectives. Sustainable management of plant diseases is an open challenge which has relevant economic and environmental impact. Optimal strategies rely on human expertise for field scouting under favourable conditions to assess the current presence and extent of disease symptoms. This labor-intensive task is complicated by the large field area to be scouted, combined with the millimeter-scale size of the early symptoms to be detected. In view of this, image-based detection of early disease symptoms is an attractive approach to automate this process, enabling a potential high throughput monitoring at sustainable costs. Methods. Deep learning has been successfully applied in various domains to obtain an automatic selection of the relevant image features by learning filters via a training procedure. Deep learning has recently entered also the domain of plant disease detection: following this idea, in this work we present a deep learning approach to automatically recognize powdery mildew on cucumber leaves. We focus on unsupervised deep learning techniques applied to multispectral imaging data and we propose the use of autoencoder architectures to investigate two strategies for disease detection: i) clusterization of features in a compressed space; ii) anomaly detection. Results. The two proposed approaches have been assessed by quantitative indices. The clusterization approach is not fully capable by itself to provide accurate predictions but it does cater relevant information. Anomaly detection has instead a significant potential of resolution which could be further exploited as a prior for supervised architectures with a very limited number of labeled samples.


翻译:植物疾病的可持续管理是一个开放的挑战,它具有相关的经济和环境影响。最佳战略依靠人的专门知识,在有利的条件下进行实地侦察,以评估目前存在的疾病症状和范围。这项劳动密集型任务由于要探测的大面积地区而变得复杂,需要探测的早期症状的毫米尺寸也随之而来。有鉴于此,以图像为基础探测早期疾病症状是使这一进程自动化的有吸引力的方法,能够以可持续成本进行潜在的高通过量监测。方法:在各个领域成功地应用了深层次的学习,以便通过培训程序学习过滤器自动选择相关的图像特征。深层学习最近也进入了植物疾病检测领域:根据这个想法,我们在此工作中提出了一种深层次的学习方法,自动识别黄瓜叶上的微弱粉末。我们注重在多光谱成像数据中应用的未经监督的深层学习技术,我们提议使用自动电解码结构来调查两种疾病检测战略:i)压缩空间的特征的集群化;ii)反常现象检测。根据这个想法,拟议的两种方法已经进入了植物疾病检测领域:根据这个想法,我们提出的深层次的标本进行了评估,而不是通过定量指数来评估。

0
下载
关闭预览

相关内容

【脑机接口教程】Machine Learning for BCI,NeurotechEDU
专知会员服务
34+阅读 · 2022年2月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
9+阅读 · 2021年10月5日
Arxiv
31+阅读 · 2021年3月29日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
53+阅读 · 2018年12月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
9+阅读 · 2021年10月5日
Arxiv
31+阅读 · 2021年3月29日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
53+阅读 · 2018年12月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Top
微信扫码咨询专知VIP会员