State-of-the-art deep learning models are often trained with a large amount of costly labeled training data. However, requiring exhaustive manual annotations may degrade the model's generalizability in the limited-label regime. Semi-supervised learning and unsupervised learning offer promising paradigms to learn from an abundance of unlabeled visual data. Recent progress in these paradigms has indicated the strong benefits of leveraging unlabeled data to improve model generalization and provide better model initialization. In this survey, we review the recent advanced deep learning algorithms on semi-supervised learning (SSL) and unsupervised learning (UL) for visual recognition from a unified perspective. To offer a holistic understanding of the state-of-the-art in these areas, we propose a unified taxonomy. We categorize existing representative SSL and UL with comprehensive and insightful analysis to highlight their design rationales in different learning scenarios and applications in different computer vision tasks. Lastly, we discuss the emerging trends and open challenges in SSL and UL to shed light on future critical research directions.
翻译:最先进的深层次学习模式往往经过大量昂贵的标签培训数据的培训,然而,要求详尽的手册说明可能会降低该模式在有限标签制度中的通用性。半监督的学习和不受监督的学习为从大量未贴标签的视觉数据中学习提供了有希望的范例。这些范例的最近进展表明利用未贴标签的数据改进模型的概括化和提供更好的模型初始化的极大好处。在这次调查中,我们审查了半监督学习和未经监督的学习(UL)方面最近先进的深层次学习算法,以便从统一的角度进行视觉识别。为了从整体上理解这些领域的艺术现状,我们提议了一个统一的分类学。我们用全面和深入的分析对现有的SLS和UL进行了分类,以突出其在不同学习情景中的设计原理和不同计算机视觉任务中的应用。最后,我们讨论了SSL和UL中新出现的趋势和公开挑战,以揭示未来的关键研究方向。