Eliminating ghosting artifacts due to moving objects is a challenging problem in high dynamic range (HDR) imaging. In this letter, we present a hybrid model consisting of a convolutional encoder and a Transformer decoder to generate ghost-free HDR images. In the encoder, a context aggregation network and non-local attention block are adopted to optimize multi-scale features and capture both global and local dependencies of multiple low dynamic range (LDR) images. The decoder based on Swin Transformer is utilized to improve the reconstruction capability of the proposed model. Motivated by the phenomenal difference between the presence and absence of artifacts under the field of structure tensor (ST), we integrate the ST information of LDR images as auxiliary inputs of the network and use ST loss to further constrain artifacts. Different from previous approaches, our network is capable of processing an arbitrary number of input LDR images. Qualitative and quantitative experiments demonstrate the effectiveness of the proposed method by comparing it with existing state-of-the-art HDR deghosting models. Codes are available at https://github.com/pandayuanyu/HSTHdr.
翻译:在高动态范围(HDR)成像中,消除移动物体造成的幽灵文物是一个具有挑战性的问题。在本信中,我们提出了一个混合模型,其中包括一个革命编码器和一个变异器解码器,以生成无鬼的《人类发展报告》图像。在编码器中,采用了一个背景聚合网络和非本地关注块,以优化多尺度特征,并捕捉多种低动态范围图像的全球和地方依赖性。基于Swin变异器的解码器被用来提高拟议模型的重建能力。受结构高压(ST)领域存在和不存在的文物的惊人差异的驱动,我们整合了LDR图像的ST信息,作为网络的辅助投入,并利用ST损失来进一步限制文物。不同于以往的做法,我们的网络能够处理输入的LDR图像的任意数量。定性和定量实验表明拟议方法的有效性,将它与现有的状态-HDRDRDS脱宿模型进行比较。在https://github.com/pandayualyum/HSHSHS中可以找到代码。