In this paper, we study a new stochastic submodular maximization problem with state-dependent costs and rejections. The input of our problem is a budget constraint $B$, and a set of items whose states (i.e., the marginal contribution and the cost of an item) are drawn from a known probability distribution. The only way to know the realized state of an item is to probe that item. We allow rejections, i.e., after probing an item and knowing its actual state, we must decide immediately and irrevocably whether to add that item to our solution or not. Our objective is to sequentially probe/selet a best group of items subject to a budget constraint on the total cost of the selected items. We present a constant approximate solution to this problem. We show that our solution can be extended to an online setting.


翻译:在本文中,我们研究了一个新的随机亚模块最大化问题,即依赖国家的成本和拒绝。我们问题的投入是预算限制$B$,以及一系列项目,其状况(即一个项目的边际贡献和成本)是从已知的概率分布中得出的。了解一个项目已实现状态的唯一办法就是调查该项目。我们允许拒绝,即在核查一个项目并知道其实际状况之后,我们必须立即和不可逆转地决定是否将该项目添加到我们的解决方案中。我们的目标是按顺序调查/发送一组受预算限制的、受选定项目总成本制约的最佳项目。我们提出了这一问题的经常近似解决办法。我们表明,我们的解决办法可以扩展到一个在线环境。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
下载 | 最优化算法鸟视解读
专知
54+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
下载 | 最优化算法鸟视解读
专知
54+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员