We provide the first-ever performance evaluation of orthogonal time frequency space (OTFS) modulation in cell-free massive multiple-input multiple-output (MIMO) systems. To investigate trade-off between performance and overhead, we apply embedded pilot-aided and superimposed pilot-based channel estimation methods. We then derive a closed-form expression for the individual user downlink and uplink spectral efficiencies as a function of the numbers of APs, users and delay-Doppler domain channel estimate parameters. Based on these analytical results, we also present new scaling laws that the AP's and user's transmit power should satisfy, to sustain a desirable quality of service. It is found that when the number of APs, $M_a$, grows without bound, we can reduce the transmit power of each user and AP proportionally to $1/M_a$ and $1/M_a^2$, respectively, during the uplink and downlink phases. We compare the OTFS performance with that of orthogonal frequency division multiplexing (OFDM) at high-mobility conditions. Our findings reveal that with shadowing correlation, OTFS modulation with embedded pilot-based channel estimation provides $30$-folds gain over the OFDM counterpart in terms of $95\%$-likely per-user downlink rate. Finally, with superimposed pilot-based channel estimation, the increase in the per-user throughput is more pronounced at the median rates over the correlated shadowing channels.
翻译:我们首次在无细胞、用户和延迟-多普勒域域域估计参数中提供对正对时间频率空间(OTFS)的性能评估。为了调查性能和间接费用之间的权衡,我们采用了嵌入式试点辅助和超叠式试点基频道估算方法。然后,我们根据这些分析结果,为单个用户的下行链接和上传光谱效率提供了一种封闭式的表达方式,这是由AP、用户和用户在无细胞的大规模多输入多输出输出(MIMO)系统中的估计参数所决定的。我们还提出了新的扩展法,供AP和用户传输权力满足,以维持一个理想的服务质量。我们发现,当AP、$$a$和超导出式试点频道数量增加时,我们可以相应地将每个用户和AP的传输能力降低到1/Ma美元和1/M_a%2美元。我们比较OTFS的性能表现与高移动频率(ODDM)的多重估算值,我们的调查结果显示,在高流动性条件下的对等用户的汇率将比值比值增加ODFTF值。