Removing all connections between two vertices s and z in a graph by removing a minimum number of vertices is a fundamental problem in algorithmic graph theory. This (s,z)-separation problem is well-known to be polynomial solvable and serves as an important primitive in many applications related to network connectivity. We study the NP-hard temporal (s,z)-separation problem on temporal graphs, which are graphs with fixed vertex sets but edge sets that change over discrete time steps. We tackle this problem by restricting the layers (i.e., graphs characterized by edges that are present at a certain point in time) to specific graph classes. We restrict the layers of the temporal graphs to be either all split graphs or all permutation graphs (both being perfect graph classes) and provide both intractability and tractability results. In particular, we show that in general the problem remains NP-hard both on temporal split and temporal permutation graphs, but we also spot promising islands of fixed-parameter tractability particularly based on parameterizations that measure the amount of "change over time".
翻译:在图形中消除两个顶端之间的所有连接, 并删除最小数量的顶端和 z 之间的所有连接是算法图形理论中的一个基本问题。 这个( s,z) 分离问题众所周知是多元溶解的, 在与网络连接相关的许多应用中, 是一个重要的原始问题 。 我们研究了时间图中NP- 硬时间分解问题, 即使用固定的顶端数据集的图形, 但却是离散时间步骤变化的边缘数据集 。 我们通过将层( 即以某一时间点存在的边缘为特征的图表) 限制在特定的图形类中来解决这个问题。 我们限制时间图的层, 将时间图的层限制为所有分裂的图形或所有透析图( 均为完美的图形类), 并提供不易移动性和可移动性结果 。 特别是, 我们显示, 一般来说, 问题在时间分解和时间透析图上仍然难以 NP- 硬度, 但我们也发现有希望的固定参数可移的岛屿, 特别是以参数化为衡量“ 超时值” 。