We show that the parameters of a $k$-mixture of inverse Gaussian or gamma distributions are algebraically identifiable from the first $3k-1$ moments, and rationally identifiable from the first $3k+2$ moments. Our proofs are based on Terracini's classification of defective surfaces, careful analysis of the intersection theory of moment varieties, and a recent result on sufficient conditions for rational identifiability of secant varieties by Massarenti--Mella.
翻译:暂无翻译