Africa is home to over 2000 languages from over six language families and has the highest linguistic diversity among all continents. This includes 75 languages with at least one million speakers each. Yet, there is little NLP research conducted on African languages. Crucial in enabling such research is the availability of high-quality annotated datasets. In this paper, we introduce AfriSenti, which consists of 14 sentiment datasets of 110,000+ tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yor\`ub\'a) from four language families annotated by native speakers. The data is used in SemEval 2023 Task 12, the first Afro-centric SemEval shared task. We describe the data collection methodology, annotation process, and related challenges when curating each of the datasets. We conduct experiments with different sentiment classification baselines and discuss their usefulness. We hope AfriSenti enables new work on under-represented languages. The dataset is available at https://github.com/afrisenti-semeval/afrisent-semeval-2023 and can also be loaded as a huggingface datasets (https://huggingface.co/datasets/shmuhammad/AfriSenti).
翻译:非洲拥有超过2000种语言,来自六个语系,是所有大陆中语言多样性最高的地区。它包括75种拥有至少一百万使用者的语言。然而,非洲语言的自然语言处理研究很少。其中一个重要原因是缺乏高质量的带注释数据集。在本文中,我们引入了AfriSenti,它由14个情感数据集组成,包括来自四个语系、14种非洲语言(Amharic、Algerian Arabic、Hausa、Igbo、Kinyarwanda、Moroccan Arabic、Mozambican Portuguese、Nigerian Pidgin、Oromo、Swahili、Tigrinya、Twi、Xitsonga和Yoruba)的110,000多条推文,均由母语使用者进行了注释。这些数据被用于SemEval 2023任务12,这是首个以非洲为中心的SemEval共享任务。我们描述了数据收集方法、注释过程以及在编制每个数据集时遇到的相关挑战。我们使用了不同的情感分类基线进行了实验,并讨论了它们的有效性。我们希望AfriSenti能促进对被较少研究的语言的研究。数据集可在https://github.com/afrisenti-semeval/afrisent-semeval-2023上获取,也可以作为Huggingface数据集加载(https://huggingface.co/datasets/shmuhammad/AfriSenti)。