Plankton are effective indicators of environmental change and ecosystem health in freshwater habitats, but collection of plankton data using manual microscopic methods is extremely labor-intensive and expensive. Automated plankton imaging offers a promising way forward to monitor plankton communities with high frequency and accuracy in real-time. Yet, manual annotation of millions of images proposes a serious challenge to taxonomists. Deep learning classifiers have been successfully applied in various fields and provided encouraging results when used to categorize marine plankton images. Here, we present a set of deep learning models developed for the identification of lake plankton, and study several strategies to obtain optimal performances,which lead to operational prescriptions for users. To this aim, we annotated into 35 classes over 17900 images of zooplankton and large phytoplankton colonies, detected in Lake Greifensee (Switzerland) with the Dual Scripps Plankton Camera. Our best models were based on transfer learning and ensembling, which classified plankton images with 98% accuracy and 93% F1 score. When tested on freely available plankton datasets produced by other automated imaging tools (ZooScan, FlowCytobot and ISIIS), our models performed better than previously used models. Our annotated data, code and classification models are freely available online.
翻译:Plankton是淡水生境中环境变化和生态系统健康的有效指标,但使用人工微缩方法收集浮游生物数据极为耗费人力,而且费用昂贵。自动浮游生物成像为实时监测浮游生物群落提供了充满希望的前进道路,实时监测频率高、准确度高的浮游生物群落。然而,对数百万图象的人工注解对分类学家提出了严峻的挑战。深层次的学习分类人员已成功地应用于各个领域,并在对海洋浮游生物图像进行分类时提供了令人鼓舞的结果。在这里,我们展示了一套为确定浮游湖浮游生物而开发的深层次学习模型,并研究了获得最佳性能的若干战略,这些模型为用户提供了操作处方。为此,我们将浮游动物和大型浮游生物群落的17900幅图像分为35类以上,这些图像是在瑞士的莱德·克里普朗顿(Lake Greifined)与双层摄影机摄影机摄像机一起检测的。我们的最佳模型基于传输学习和聚合,这些模型对浮游生物图像进行了98%的准确度和93%的F1分分。当对其他自动获得的浮游生物数据进行测试时,测试时,比我们使用的模型更先进的模型(ZooSlookC)。