The problem of estimating location (scale) parameters $\theta_1$ and $\theta_2$ of two distributions when the ordering between them is known apriori (say, $\theta_1\leq \theta_2$) has been extensively studied in the literature. Many of these studies are centered around deriving estimators that dominate the best location (scale) equivariant estimators, for the unrestricted case, by exploiting the prior information that $\theta_1 \leq \theta_2$. Several of these studies consider specific distributions such that the associated random variables are statistically independent. This paper considers a general bivariate model and general loss function and unifies various results proved in the literature. We also consider applications of these results to a bivariate normal and a Cheriyan and Ramabhadran's bivariate gamma model. A simulation study is also considered to compare the risk performances of various estimators under bivariate normal and Cheriyan and Ramabhadran's bivariate gamma models.
翻译:文献中广泛研究了在知道两个分布点之间定值时估计位置(比例)参数($\theta_1美元和$theta_2美元)的问题,文献中已广泛研究了估算位置(比例)参数($theta_1美元和$theta_2美元)的问题。许多这些研究都围绕在最佳位置(比例)等异差估测器中占主导地位的测算器(比例)问题,在不受限制的案例中,利用以前的资料,即$\theta_1\leq\leq\theta_2美元。有些研究考虑了具体的分布,因此相关的随机变量在统计上是独立的。本文考虑了一般双变量模型和一般损失函数,并统一了文献中证明的各种结果。我们还考虑将这些结果应用到一个双变量正常模型以及一个Cheriyan和Ramabhadran的双变量伽马模型中。还考虑了一项模拟研究,以比较在双变量正常模型和Cheriyan和Ramabhadran的双变量模型下各种估算者的风险性能。