Selecting an appropriate task is challenging for contributors to Open Source Software (OSS), mainly for those who are contributing for the first time. Therefore, researchers and OSS projects have proposed various strategies to aid newcomers, including labeling tasks. We investigate the automatic labeling of open issues strategy to help the contributors to pick a task to contribute. We label the issues with API-domains--categories of APIs parsed from the source code used to solve the issues. We plan to add social network analysis metrics from the issues conversations as new predictors. By identifying the skills, we claim the contributor candidates should pick a task more suitable. We analyzed interview transcripts and the survey's open-ended questions to comprehend the strategies used to assist in onboarding contributors and used to pick up an issue. We applied quantitative studies to analyze the relevance of the labels in an experiment and compare the strategies' relative importance. We also mined issue data from OSS repositories to predict the API-domain labels with comparable precision, recall, and F-measure with the state-of-art. We plan to use a skill ontology to assist the matching process between contributors and tasks. By analyzing the confidence level of the matching instances in ontologies describing contributors' skills and tasks, we might recommend issues for contribution. So far, the results showed that organizing the issues--which includes assigning labels is seen as an essential strategy for diverse roles in OSS communities. The API-domain labels are relevant for experienced practitioners. The predictions have an average precision of 75.5%. Labeling the issues indicates the skills involved in an issue. The labels represent possible skills in the source code related to an issue. By investigating this research topic, we expect to assist the new contributors in finding a task.
翻译:选择合适的任务对开放源码软件(OSS)的捐助方来说具有挑战性,主要是那些首次贡献者。 因此, 研究人员和OSS项目提出了各种战略, 以帮助新来者, 包括标签任务。 我们调查开放问题战略的自动标签, 以帮助贡献者选择任务。 我们用API- 域别 — — 从源代码中将问题标出, 从用于解决问题的源代码中标出。 我们计划从问题对话中添加社会网络分析指标,作为新的预测者。 通过确定技能, 我们声称贡献者候选人应该选择更合适的任务。 我们分析了面试记录和调查的开放问题, 以理解用来帮助加入贡献者加入的策略, 并用来找出问题。 我们用定量研究来分析标签在实验中的关联关系, 比较战略的相对重要性。 我们还从开放源码软件库中采集问题数据, 以预测具有可比准确性、 回忆、 和 F 计量与状态有关的标签标签。 我们计划使用一种技能来帮助匹配贡献者之间的策略。 我们用这种技能来分析匹配贡献者和任务。