We propose an application for near-term quantum devices: namely, generating cryptographically certified random bits, to use (for example) in proof-of-stake cryptocurrencies. Our protocol repurposes the existing "quantum supremacy" experiments, based on random circuit sampling, that Google and USTC have successfully carried out starting in 2019. We show that, whenever the outputs of these experiments pass the now-standard Linear Cross-Entropy Benchmark (LXEB), under plausible hardness assumptions they necessarily contain $\Omega(n)$ min-entropy, where $n$ is the number of qubits. To achieve a net gain in randomness, we use a small random seed to produce pseudorandom challenge circuits. In response to the challenge circuits, the quantum computer generates output strings that, after verification, can then be fed into a randomness extractor to produce certified nearly-uniform bits -- thereby "bootstrapping" from pseudorandomness to genuine randomness. We prove our protocol sound in two senses: (i) under a hardness assumption called Long List Quantum Supremacy Verification, which we justify in the random oracle model, and (ii) unconditionally in the random oracle model against an eavesdropper who could share arbitrary entanglement with the device. (Note that our protocol's output is unpredictable even to a computationally unbounded adversary who can see the random oracle.) Currently, the central drawback of our protocol is the exponential cost of verification, which in practice will limit its implementation to at most $n\sim 60$ qubits, a regime where attacks are expensive but not impossible. Modulo that drawback, our protocol appears to be the only practical application of quantum computing that both requires a QC and is physically realizable today.
翻译:我们建议了近距离量装置的应用程序 : 即生成加密认证的随机比特, 用于( 例如) 用于( 例如) 验收加密。 我们的协议将基于随机电路取样的现有“ 量优势” 实验重新定位为谷歌和USTC 于2019年成功启动的。 我们显示, 当这些实验的产出通过现在的标准线性跨 Entropy 基准( LXEB) 时, 这些实验的产出必然包含 $\ Omega (n) min- min- opropy, 其中美元是 qubit 的数量数量。 为了实现随机性的净增益, 我们使用一个小的随机种子来生成假冒的电路。 为了回应挑战性电路, 量计算机生成输出机, 在核查后, 将输入随机性提取器, 从而产生近乎一致的比特( LXI), 从而“ 启动” 从伪的“ 启动” 到真正的随机性。 我们用两种方式来证明我们的协议声音: (i) 在不透明性假设中, 最不透明性的成本假设中,, 直径直径直径直径直为直到直到直线性操作,, 直到直到直线性 直到直到直方 直方的计算, 直方的计算, 直方 直方 直到直到直到直到直方, 直方 直方 直方 。 。</s>