We propose an application for near-term quantum devices: namely, generating cryptographically certified random bits, to use (for example) in proof-of-stake cryptocurrencies. Our protocol repurposes the existing "quantum supremacy" experiments, based on random circuit sampling, that Google and USTC have successfully carried out starting in 2019. We show that, whenever the outputs of these experiments pass the now-standard Linear Cross-Entropy Benchmark (LXEB), under plausible hardness assumptions they necessarily contain $\Omega(n)$ min-entropy, where $n$ is the number of qubits. To achieve a net gain in randomness, we use a small random seed to produce pseudorandom challenge circuits. In response to the challenge circuits, the quantum computer generates output strings that, after verification, can then be fed into a randomness extractor to produce certified nearly-uniform bits -- thereby "bootstrapping" from pseudorandomness to genuine randomness. We prove our protocol sound in two senses: (i) under a hardness assumption called Long List Quantum Supremacy Verification, which we justify in the random oracle model, and (ii) unconditionally in the random oracle model against an eavesdropper who could share arbitrary entanglement with the device. (Note that our protocol's output is unpredictable even to a computationally unbounded adversary who can see the random oracle.) Currently, the central drawback of our protocol is the exponential cost of verification, which in practice will limit its implementation to at most $n\sim 60$ qubits, a regime where attacks are expensive but not impossible. Modulo that drawback, our protocol appears to be the only practical application of quantum computing that both requires a QC and is physically realizable today.


翻译:我们建议了近距离量装置的应用程序 : 即生成加密认证的随机比特, 用于( 例如) 用于( 例如) 验收加密。 我们的协议将基于随机电路取样的现有“ 量优势” 实验重新定位为谷歌和USTC 于2019年成功启动的。 我们显示, 当这些实验的产出通过现在的标准线性跨 Entropy 基准( LXEB) 时, 这些实验的产出必然包含 $\ Omega (n) min- min- opropy, 其中美元是 qubit 的数量数量。 为了实现随机性的净增益, 我们使用一个小的随机种子来生成假冒的电路。 为了回应挑战性电路, 量计算机生成输出机, 在核查后, 将输入随机性提取器, 从而产生近乎一致的比特( LXI), 从而“ 启动” 从伪的“ 启动” 到真正的随机性。 我们用两种方式来证明我们的协议声音: (i) 在不透明性假设中, 最不透明性的成本假设中,, 直径直径直径直径直为直到直到直线性操作,, 直到直到直线性 直到直到直方 直方的计算, 直方的计算, 直方 直方 直到直到直到直到直方, 直方 直方 直方 。 。</s>

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月23日
Arxiv
0+阅读 · 2023年4月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员