We study the $2$-Dimensional Vector Bin Packing Problem (2VBP), a generalization of classic Bin Packing that is widely applicable in resource allocation and scheduling. In 2VBP we are given a set of items, where each item is associated with a two-dimensional volume vector. The objective is to partition the items into a minimal number of subsets (bins), such that the total volume of items in each subset is at most $1$ in each dimension. We give an asymptotic $\left(\frac{4}{3}+\varepsilon\right)$-approximation for the problem, thus improving upon the best known asymptotic ratio of $\left(1+\ln \frac{3}{2}+\varepsilon\right)\approx 1.406$ due to Bansal, Elias and Khan (SODA 2016). Our algorithm applies a novel Round&Round approach which iteratively solves a configuration LP relaxation for the residual instance and samples a small number of configurations based on the solution for the configuration LP. For the analysis we derive an iteration-dependent upper bound on the solution size for the configuration LP, which holds with high probability. To facilitate the analysis, we introduce key structural properties of 2VBP instances, leveraging the recent fractional grouping technique of Fairstein et al. (ESA 2021).
翻译:我们研究的是2美元差异矢量包装问题(2VBP),这是在资源分配和日程安排上广泛适用的典型Bin包装的典型Bin包装的通用。 在 2VBP中,我们得到了一套项目,其中每个项目都与二维体积矢量矢量相关。 目标是将每个子集的物品分解成少量子集( bins), 这样每个子集的物品总量在每个维度上最多为$1美元。 我们的算法采用了一种新颖的圆和Round 方法, 迭接地解决了配置LP 的配置 LP 轻松度, 并且根据配置LP 的解决方案, 从而改进了已知的$left (1 ⁇ ln\\ 3 ⁇ 2 ⁇ ⁇ varepsilon\right) 的最佳“ 受保比重比率 ” (approx 1. 406$) 用于BES、 Eliasal和 Khan (SO 2016年SO ) 。我们的算法应用了一种新的圆和Round 方法, 它的配置LP 的配置的配置的配置, 和样本结构结构特性的高级分析, 我们用它的精度分析采用了的精度的精度的精度, 的精度分析采用了的精度的精度为20。