Deep Generative Models (DGMs) are known for their superior capability in generating realistic data. Extending purely data-driven approaches, recent specialized DGMs may satisfy additional controllable requirements such as embedding a traffic sign in a driving scene, by manipulating patterns \textit{implicitly} in the neuron or feature level. In this paper, we introduce a novel method to incorporate domain knowledge \textit{explicitly} in the generation process to achieve semantically controllable scene generation. We categorize our knowledge into two types to be consistent with the composition of natural scenes, where the first type represents the property of objects and the second type represents the relationship among objects. We then propose a tree-structured generative model to learn complex scene representation, whose nodes and edges are naturally corresponding to the two types of knowledge respectively. Knowledge can be explicitly integrated to enable semantically controllable scene generation by imposing semantic rules on properties of nodes and edges in the tree structure. We construct a synthetic example to illustrate the controllability and explainability of our method in a clean setting. We further extend the synthetic example to realistic autonomous vehicle driving environments and conduct extensive experiments to show that our method efficiently identifies adversarial traffic scenes against different state-of-the-art 3D point cloud segmentation models satisfying the traffic rules specified as the explicit knowledge.

0
下载
关闭预览

相关内容

Controllable text generation is an appealing but challenging task, which allows users to specify particular attributes of the generated outputs. In this paper, we propose a controllable dialogue generation model to steer response generation under multi-attribute constraints. Specifically, we define and categorize the commonly used control attributes into global and local ones, which possess different granularities of effects on response generation. Then, we significantly extend the conventional seq2seq framework by introducing a novel two-stage decoder, which first uses a multi-grained style specification layer to impose the stylistic constraints and determine word-level control states of responses based on the attributes, and then employs a response generation layer to generate final responses maintaining both semantic relevancy to the contexts and fidelity to the attributes. Furthermore, we train our model with an attribute consistency reward to promote response control with explicit supervision signals. Extensive experiments and in-depth analyses on two datasets indicate that our model can significantly outperform competitive baselines in terms of response quality, content diversity and controllability.

0
0
下载
预览

Autonomous Driving Systems (ADS) are critical dynamic reconfigurable agent systems whose specification and validation raises extremely challenging problems. The paper presents a multilevel semantic framework for the specification of ADS and discusses associated validation problems. The framework relies on a formal definition of maps modeling the physical environment in which vehicles evolve. Maps are directed metric graphs whose nodes represent positions and edges represent segments of roads. We study basic properties of maps including their geometric consistency. Furthermore, we study position refinement and segment abstraction relations allowing multilevel representation from purely topological to detailed geometric. We progressively define first order logics for modeling families of maps and distributions of vehicles over maps. These are Configuration Logics, which in addition to the usual logical connectives are equipped with a coalescing operator to build configurations of models. We study their semantics and basic properties. We illustrate their use for the specification of traffic rules and scenarios characterizing sequences of scenes. We study various aspects of the validation problem including run-time verification and satisfiability of specifications. Finally, we show links of our framework with practical validation needs for ADS and advocate its adequacy for addressing the many facets of this challenge.

0
0
下载
预览

To generate "accurate" scene graphs, almost all existing methods predict pairwise relationships in a deterministic manner. However, we argue that visual relationships are often semantically ambiguous. Specifically, inspired by linguistic knowledge, we classify the ambiguity into three types: Synonymy Ambiguity, Hyponymy Ambiguity, and Multi-view Ambiguity. The ambiguity naturally leads to the issue of \emph{implicit multi-label}, motivating the need for diverse predictions. In this work, we propose a novel plug-and-play Probabilistic Uncertainty Modeling (PUM) module. It models each union region as a Gaussian distribution, whose variance measures the uncertainty of the corresponding visual content. Compared to the conventional deterministic methods, such uncertainty modeling brings stochasticity of feature representation, which naturally enables diverse predictions. As a byproduct, PUM also manages to cover more fine-grained relationships and thus alleviates the issue of bias towards frequent relationships. Extensive experiments on the large-scale Visual Genome benchmark show that combining PUM with newly proposed ResCAGCN can achieve state-of-the-art performances, especially under the mean recall metric. Furthermore, we prove the universal effectiveness of PUM by plugging it into some existing models and provide insightful analysis of its ability to generate diverse yet plausible visual relationships.

0
7
下载
预览

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

0
18
下载
预览

Humans are able to describe image contents with coarse to fine details as they wish. However, most image captioning models are intention-agnostic which can not generate diverse descriptions according to different user intentions initiatively. In this work, we propose the Abstract Scene Graph (ASG) structure to represent user intention in fine-grained level and control what and how detailed the generated description should be. The ASG is a directed graph consisting of three types of \textbf{abstract nodes} (object, attribute, relationship) grounded in the image without any concrete semantic labels. Thus it is easy to obtain either manually or automatically. From the ASG, we propose a novel ASG2Caption model, which is able to recognise user intentions and semantics in the graph, and therefore generate desired captions according to the graph structure. Our model achieves better controllability conditioning on ASGs than carefully designed baselines on both VisualGenome and MSCOCO datasets. It also significantly improves the caption diversity via automatically sampling diverse ASGs as control signals.

0
5
下载
预览

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

0
25
下载
预览

Scene graphs are powerful representations that encode images into their abstract semantic elements, i.e, objects and their interactions, which facilitates visual comprehension and explainable reasoning. On the other hand, commonsense knowledge graphs are rich repositories that encode how the world is structured, and how general concepts interact. In this paper, we present a unified formulation of these two constructs, where a scene graph is seen as an image-conditioned instantiation of a commonsense knowledge graph. Based on this new perspective, we re-formulate scene graph generation as the inference of a bridge between the scene and commonsense graphs, where each entity or predicate instance in the scene graph has to be linked to its corresponding entity or predicate class in the commonsense graph. To this end, we propose a heterogeneous graph inference framework allowing to exploit the rich structure within the scene and commonsense at the same time. Through extensive experiments, we show the proposed method achieves significant improvement over the state of the art.

0
3
下载
预览

To understand a scene in depth not only involves locating/recognizing individual objects, but also requires to infer the relationships and interactions among them. However, since the distribution of real-world relationships is seriously unbalanced, existing methods perform quite poorly for the less frequent relationships. In this work, we find that the statistical correlations between object pairs and their relationships can effectively regularize semantic space and make prediction less ambiguous, and thus well address the unbalanced distribution issue. To achieve this, we incorporate these statistical correlations into deep neural networks to facilitate scene graph generation by developing a Knowledge-Embedded Routing Network. More specifically, we show that the statistical correlations between objects appearing in images and their relationships, can be explicitly represented by a structured knowledge graph, and a routing mechanism is learned to propagate messages through the graph to explore their interactions. Extensive experiments on the large-scale Visual Genome dataset demonstrate the superiority of the proposed method over current state-of-the-art competitors.

0
3
下载
预览

Generating realistic images from scene graphs asks neural networks to be able to reason about object relationships and compositionality. As a relatively new task, how to properly ensure the generated images comply with scene graphs or how to measure task performance remains an open question. In this paper, we propose to harness scene graph context to improve image generation from scene graphs. We introduce a scene graph context network that pools features generated by a graph convolutional neural network that are then provided to both the image generation network and the adversarial loss. With the context network, our model is trained to not only generate realistic looking images, but also to better preserve non-spatial object relationships. We also define two novel evaluation metrics, the relation score and the mean opinion relation score, for this task that directly evaluate scene graph compliance. We use both quantitative and qualitative studies to demonstrate that our pro-posed model outperforms the state-of-the-art on this challenging task.

0
3
下载
预览

In this paper, we study the problem of parsing structured knowledge graphs from textual descriptions. In particular, we consider the scene graph representation that considers objects together with their attributes and relations: this representation has been proved useful across a variety of vision and language applications. We begin by introducing an alternative but equivalent edge-centric view of scene graphs that connect to dependency parses. Together with a careful redesign of label and action space, we combine the two-stage pipeline used in prior work (generic dependency parsing followed by simple post-processing) into one, enabling end-to-end training. The scene graphs generated by our learned neural dependency parser achieve an F-score similarity of 49.67% to ground truth graphs on our evaluation set, surpassing best previous approaches by 5%. We further demonstrate the effectiveness of our learned parser on image retrieval applications.

0
6
下载
预览
小贴士
相关论文
Zhe Hu,Zhiwei Cao,Hou Pong Chan,Jiachen Liu,Xinyan Xiao,Jinsong Su,Hua Wu
0+阅读 · 9月14日
Gengcong Yang,Jingyi Zhang,Yong Zhang,Baoyuan Wu,Yujiu Yang
7+阅读 · 3月10日
Ye Liu,Yao Wan,Lifang He,Hao Peng,Philip S. Yu
18+阅读 · 1月21日
Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs
Shizhe Chen,Qin Jin,Peng Wang,Qi Wu
5+阅读 · 2020年3月1日
Hongwei Wang,Hongyu Ren,Jure Leskovec
25+阅读 · 2020年2月17日
Bridging Knowledge Graphs to Generate Scene Graphs
Alireza Zareian,Svebor Karaman,Shih-Fu Chang
3+阅读 · 2020年1月7日
Tianshui Chen,Weihao Yu,Riquan Chen,Liang Lin
3+阅读 · 2019年3月8日
Using Scene Graph Context to Improve Image Generation
Subarna Tripathi,Anahita Bhiwandiwalla,Alexei Bastidas,Hanlin Tang
3+阅读 · 2019年1月15日
Yu-Siang Wang,Chenxi Liu,Xiaohui Zeng,Alan Yuille
6+阅读 · 2018年3月25日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
7+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2019年3月6日
Unsupervised Learning via Meta-Learning
CreateAMind
29+阅读 · 2019年1月3日
Top