Recent advances in label assignment in object detection mainly seek to independently define positive/negative training samples for each ground-truth (gt) object. In this paper, we innovatively revisit the label assignment from a global perspective and propose to formulate the assigning procedure as an Optimal Transport (OT) problem -- a well-studied topic in Optimization Theory. Concretely, we define the unit transportation cost between each demander (anchor) and supplier (gt) pair as the weighted summation of their classification and regression losses. After formulation, finding the best assignment solution is converted to solve the optimal transport plan at minimal transportation costs, which can be solved via Sinkhorn-Knopp Iteration. On COCO, a single FCOS-ResNet-50 detector equipped with Optimal Transport Assignment (OTA) can reach 40.7% mAP under 1X scheduler, outperforming all other existing assigning methods. Extensive experiments conducted on COCO and CrowdHuman further validate the effectiveness of our proposed OTA, especially its superiority in crowd scenarios. The code is available at https://github.com/Megvii-BaseDetection/OTA.
翻译:在物体探测标签分配方面最近取得的进展主要是独立地界定每个地面真实(gt)物体的正/负培训样本。在本文件中,我们从全球角度创新地重新审视标签分配,提议将分配程序作为最佳运输(OT)问题 -- -- 优化运输理论中经过认真研究的一个专题。具体地说,我们将每个需求者(锚)和供应商(gt)之间的单位运输成本定义为其分类和回归损失的加权总和。在拟定后,找到最佳分配解决办法,以最低运输成本解决最佳运输计划,这可以通过Sinkhorn-Knopp Iteration解决。关于COCO,一个装有最佳运输任务(OTA)下的单一FCOS-ResNet-50探测器可以达到40.7%的MAP,超过所有其他现有的分配方法。在COCO和CrowdHuman进行的广泛实验进一步验证了我们提议的OTA的有效性,特别是其在人群情景中的优越性。在 https://github.com/Megevariion上可以找到这一代码。