Many recent invertible neural architectures are based on coupling block designs where variables are divided in two subsets which serve as inputs of an easily invertible (usually affine) triangular transformation. While such a transformation is invertible, its Jacobian is very sparse and thus may lack expressiveness. This work presents a simple remedy by noting that subdivision and (affine) coupling can be repeated recursively within the resulting subsets, leading to an efficiently invertible block with dense, triangular Jacobian. By formulating our recursive coupling scheme via a hierarchical architecture, HINT allows sampling from a joint distribution p(y,x) and the corresponding posterior p(x|y) using a single invertible network. We evaluate our method on some standard data sets and benchmark its full power for density estimation and Bayesian inference on a novel data set of 2D shapes in Fourier parameterization, which enables consistent visualization of samples for different dimensionalities.
翻译:许多最近不可视的神经结构基于混合区块设计,其中变量被分成两个子集,作为容易倒置的(通常是偏离的)三角变形的投入。虽然这种变异是不可逆的,但它的雅各克仪非常稀少,因此可能缺乏直观性。 这项工作提供了一个简单的补救办法,它指出,在由此形成的子集中,可反复出现子和(软)相联,从而形成一个与稠密的三角Jacobian相联的高效不可逆的区块。 通过通过一个等级结构来制定我们的循环组合计划, HINT 允许从一个联合分布(y,x)和相应的后方 p(x) 进行取样, 使用一个单一的不可逆网络。 我们评估了某些标准数据集的方法, 并衡量其密度估计的全部功率, 以及Bayesian 以四维参数化的2D形状的新数据集为基准, 从而能够对不同维度的样本进行一致的可视化。