The explosive growth of the location-enabled devices coupled with the increasing use of Internet services has led to an increasing awareness of the importance and usage of geospatial information in many applications. The navigation apps (often called Maps), use a variety of available data sources to calculate and predict the travel time as well as several options for routing in public transportation, car or pedestrian modes. This paper evaluates the pedestrian mode of Maps apps in three major smartphone operating systems (Android, iOS and Windows Phone). In the paper, we will show that the Maps apps on iOS, Android and Windows Phone in pedestrian mode, predict travel time without learning from the individual's movement profile. In addition, we will exemplify that those apps suffer from a specific data quality issue which relates to the absence of information about location and type of pedestrian crossings. Finally, we will illustrate learning from movement profile of individuals using various predictive analytics models to improve the accuracy of travel time estimation.
翻译:定位装置的爆炸性增长,加上互联网服务的日益使用,使得人们日益认识到地理空间信息在许多应用中的重要性的认识和使用。导航应用程序(通常称为地图)使用各种可用的数据来源计算和预测旅行时间以及公共交通、汽车或行人模式的路线选择。本文评估了三个主要智能操作系统(Android、iOS和Windows Phone)中的地图应用的行人模式。在文件中,我们将显示在行人模式下对iOS、Android和Windows电话的地图应用,预测旅行时间而不从个人移动情况中学习。此外,我们将举例说明,这些应用程序存在与缺乏行人过境地点和类型信息有关的具体数据质量问题。最后,我们将用各种预测分析模型来说明个人的流动情况,以便提高旅行时间估计的准确性。