Crowd counting, which is significantly important for estimating the number of people in safety-critical scenes, has been shown to be vulnerable to adversarial examples in the physical world (e.g., adversarial patches). Though harmful, adversarial examples are also valuable for assessing and better understanding model robustness. However, existing adversarial example generation methods in crowd counting scenarios lack strong transferability among different black-box models. Motivated by the fact that transferability is positively correlated to the model-invariant characteristics, this paper proposes the Perceptual Adversarial Patch (PAP) generation framework to learn the shared perceptual features between models by exploiting both the model scale perception and position perception. Specifically, PAP exploits differentiable interpolation and density attention to help learn the invariance between models during training, leading to better transferability. In addition, we surprisingly found that our adversarial patches could also be utilized to benefit the performance of vanilla models for alleviating several challenges including cross datasets and complex backgrounds. Extensive experiments under both digital and physical world scenarios demonstrate the effectiveness of our PAP.


翻译:人群计数对于估计在安全临界场景中的人数非常重要,但事实证明,这种计数在物理界(例如对立阵形)中很容易受到对抗性实例的影响。虽然有害的敌对性实例对评估和更好地理解模型稳健性也十分宝贵,但现有的人群计数假设中的对抗性实例生成方法在不同黑箱模型之间缺乏很强的可转移性。由于可转移性与模式和差异性特征有着积极的联系,本文件提议了概念性对立调(PAP)生成框架,以通过利用模型规模感知和位置感知来了解各种模型之间的共同概念特征。具体地说,PAP利用不同的内推法和密度关注来帮助了解各种模型之间的差异,从而导致更好的可转移性。此外,我们惊讶地发现,我们的对抗性补丁也可用于利用香草模型的绩效来缓解包括交叉数据集和复杂背景在内的若干挑战。在数字和物理世界情景下进行的广泛实验显示了我们的PAP的有效性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
172+阅读 · 2020年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Metric Attack for Person Re-identification
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员