By definition, object detection requires a multi-task loss in order to solve classification and regression tasks simultaneously. However, loss weight tends to be set manually in actuality. Therefore, a very practical problem that has not been studied so far arises: how to quickly find the loss weight that fits the current loss functions. In addition, when we choose different regression loss functions, whether the loss weight need to be adjusted and if so, how should it be adjusted still is a problem demanding prompt solution. In this paper, through experiments and theoretical analysis of prediction box shifting, we firstly find out three important conclusions about optimal loss weight allocation strategy, including (1) the classification loss curve decays faster than regression loss curve; (2) loss weight is less than 1; (3) the gap between classification and regression loss weight should not be too large. Then, based on the above conclusions, we propose an Adaptive Loss Weight Adjustment(ALWA) to solve the above two problems by dynamically adjusting the loss weight in the training process, according to statistical characteristics of loss values. By incorporating ALWA into both one-stage and two-stage object detectors, we show a consistent improvement on their performance using L1, SmoothL1 and CIoU loss, performance measures on popular object detection benchmarks including PASCAL VOC and MS COCO. The code is available at https://github.com/ywx-hub/ALWA.


翻译:根据定义,物体探测需要多任务损失,以便同时解决分类和回归任务。然而,损失重量往往在实际中手工设定。因此,迄今尚未研究的一个非常实际的问题产生:如何迅速找到与当前损失功能相适应的损失重量;此外,当我们选择不同的回归损失函数时,是否需要调整损失重量,如果需要调整,如何进行调整仍是一个需要迅速解决问题的问题。在本文件中,通过对预测箱转换的实验和理论分析,我们首先发现关于最佳损失重量分配战略的三项重要结论,包括:(1) 分类损失曲线比回归损失曲线衰减速度快;(2) 损失重量小于1;(3) 分类和回归损失重量之间的差距不应太大。然后,根据上述结论,我们提出调整损失重量调整调整(ALWA),以便根据损失价值的统计特征,对培训过程中的损失重量进行动态调整,从而解决上述两个问题。通过将ALWA纳入一阶段和两阶段的物体探测器,我们用L1、SlaxL1和IMU损失基准显示其业绩的一贯改进,包括MAOC/MA/SAL标准。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
12+阅读 · 2019年4月9日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年5月10日
Arxiv
12+阅读 · 2019年4月9日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员