In this paper, we extend the logarithmic Euler-Maruyama scheme for stochastic delay differential equation in one dimension to the part where we propose a scheme for a system of stochastic delay differential equations. We then show that the scheme always maintains positivity subject to initial conditions. We then show the convergence of the proposed Euler-Maruyama scheme. With this scheme, all the approximate solutions are positive and the rate of convergence of this scheme is 0.5.


翻译:在本文中,我们把对数极极速延迟差分方程的对数极极极极-海洋山计划扩大至一个层面,即我们提出一个随机延缓差分方程制度的对数,然后我们表明,这个计划总是在初步条件下保持积极性,然后我们显示提议的欧极-海洋计划趋于一致。有了这个计划,所有近似的解决办法都是正的,而这个计划的趋同率是0.5。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年3月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
也谈压缩感知和贝叶斯大脑
人工智能学家
3+阅读 · 2018年8月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年3月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
也谈压缩感知和贝叶斯大脑
人工智能学家
3+阅读 · 2018年8月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员