The dependency tree of a natural language sentence can capture the interactions between semantics and words. However, it is unclear whether those methods which exploit such dependency information for semantic parsing can be combined to achieve further improvement and the relationship of those methods when they combine. In this paper, we examine three methods to incorporate such dependency information in a Transformer based semantic parser and empirically study their combinations. We first replace standard self-attention heads in the encoder with parent-scaled self-attention (PASCAL) heads, i.e., the ones that can attend to the dependency parent of each token. Then we concatenate syntax-aware word representations (SAWRs), i.e., the intermediate hidden representations of a neural dependency parser, with ordinary word embedding to enhance the encoder. Later, we insert the constituent attention (CA) module to the encoder, which adds an extra constraint to attention heads that can better capture the inherent dependency structure of input sentences. Transductive ensemble learning (TEL) is used for model aggregation, and an ablation study is conducted to show the contribution of each method. Our experiments show that CA is complementary to PASCAL or SAWRs, and PASCAL + CA provides state-of-the-art performance among neural approaches on ATIS, GEO, and JOBS.


翻译:自然语言句的依附树可以捕捉语义和文字之间的相互作用。 但是,尚不清楚的是,那些利用这些依赖信息进行语义区分的方法是否可以结合起来,以进一步改进和这些方法之间的关系。 在本文中,我们研究三种方法,将这种依附信息纳入基于变异器的语义剖析器,并实验研究其组合。我们首先将编码中的标准自省头替换为父级自省(PASCAL)头,即能够照顾到每个符号的依附父父母的那些方法。然后,我们将通识词表解(SAWWRSs),即神经依赖剖析器的中间隐藏表达方式纳入基于变异器的语义解析器,然后,我们将构成注意(CA)模块插入编码器,这给注意力头增加了额外的制约,可以更好地捕捉输入句的内在依赖性结构。在模型汇总中使用传导词串联式学习(TEL),然后,我们将通识字义表达“CA-SAR-L”系统实验的每一种方法。

0
下载
关闭预览

相关内容

语义分析的最终目的是理解句子表达的真实语义。但是,语义应该采用什么表示形式一直困扰着研究者们,至今这个问题也没有一个统一的答案。语义角色标注(semantic role labeling)是目前比较成熟的浅层语义分析技术。基于逻辑表达的语义分析也得到学术界的长期关注。
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员