We design and study splitting integrators for the temporal discretization of the stochastic FitzHugh--Nagumo system. This system is a model for signal propagation in nerve cells where the voltage variable is solution of a one-dimensional parabolic PDE with a cubic nonlinearity driven by additive space-time white noise. We first show that the numerical solutions have finite moments. We then prove that the splitting schemes have, at least, the strong rate of convergence $1/4$. Finally, numerical experiments illustrating the performance of the splitting schemes are provided.
翻译:我们设计并研究分解集成器,用于随机分解Stochatic FitzHugh-Nagumo系统。这个系统是神经细胞信号传播的模型,这里的电压变量是单维抛物线PDE的溶液,由添加的时空白噪音驱动的立方无线性。我们首先显示数字解决方案有一定的瞬间。然后我们证明分裂计划至少具有强烈的趋同率1/4美元。最后,提供了说明分裂计划绩效的数字实验。